
Developing the Cooperative
Mission Development Environment

Christopher Rouff

Goddard Space Flight Center
Code 522.2

Greenbelt, MD 20771, USA
chris.rouff@gsfc.nasa.gov

Mary Ann Robbert

Bentley College
175 Forest Street

Waltham, MA, 02154-4705, USA
mrobbert@bentley.edu

ABSTRACT
The Cooperative Mission Development Environment
(CMDE) was developed to unite independent
applications and databases into a cooperating tool set
capable of sharing data. As missions developed stand-
alone tools to meet immediate needs and to automate
paper functions, a proliferation of development and
automation tools came into existence. It soon became
apparent that data in one tool could be used by another
tool and a significant improvement in productivity could
be obtained by combining the tools and sharing the data
between them. This paper examines: how the
independent systems arose, why the need developed to
integrate the independent systems, the integration
approaches considered, the process used for integration,
how coordination between tool developers was handled,
challenges faced during integration, plus current
challenges, and future plans.

Keywords
Client/server, middleware, islands of computing,
integrating databases

INTRODUCTION
The Cooperative Mission Development Environment
(CMDE) is a collection of heterogeneous mission
development tools that share data through a middleware
layer. These tools were originally developed
independently and over time were linked together to
provide a single environment for sharing and processing
data [6].

CMDE evolved in response to a situation common in
many large enterprises. Multiple processes were being
performed manually causing delays and duplication of

effort. As processes were computerized, focus was on
the solution of the immediate problems. User interfaces
were designed to resemble traditional paper forms and
off-the-shelf products were installed to meet specific
needs, while no overall architecture for integration and
growth was taken into account.

The Mission Operations and Data Systems Directorate
(MO&DSD) at NASA also ran into this problem. The
MO&DSD is responsible for developing ground systems
for satellites. Over the years different divisions in the
directorate developed software tools to help in the
development of various ground stations. These tools
were developed to perform a specific task and often
without knowledge of the existence of other tools, or
under time constraints that made it impractical to
integrate them with other tools. The result was the
development of islands of computing.

As developers used these tools across several missions, it
soon became apparent that data in one tool could be
referenced or used as a starting point by another tool.
Linking data between tools would reduce the effort
needed for reentering data, manually cross referencing
data for status reports, or tracking how changes in one
part of a system would effect parts in another.

This paper examines the process of designing and
implementing an architecture that would integrate
diverse tools in place with minimum disruption to
operations. We describe: why the independent systems
needed to be integrated, the integration approaches and
tradeoffs considered, the process used for integration,
how coordination between tool developers was handled,
challenges faced during integration, plus current
challenges and future plans.

THE NEED FOR COMBINING TOOLS
While developing new missions, units within NASA
developed systems to meet their particular mission’s
immediate needs, including requirement definitions,
tracking, discrepancy reports, and configuration

management. The lack of cross system and cross
mission visibility caused overlapping systems and
duplication of data and resources. The individual growth
in many cases resulted in equal but separate systems as
well as complimentary systems.

Since systems were developed in isolation, no
consideration was given to compatibility. Separate
systems were implemented on a variety of platforms.
These were vertically constructed to solve individual
mission problems. Client platforms included Mac’s and
PC’s, while hosts varied across missions as well as
within missions. The disparate database management
systems installed on the servers raised the possibility of
even more integrity problems in the system.

An example of a tool that was developed in isolation and
whose data was later determined useful for other tools is
the Requirements Generation System (RGS) [10]. RGS
automates the development, editing, review, approval,
and creation of requirements documents. The system
provides a historical database of requirements to
promote reuse of requirements across missions. Like
many tools, RGS was developed as a two-tier
client/server system [7]. This allowed users to access
the database through their local workstation at a remote
site and off-loaded much of the work from the database
server machine to the client machine.

Several other development tools reference the same
requirement names and numbers as RGS and could
benefit from the client/server model. It was noted too
that productivity could be increased if users could search
for a requirement on-line instead of having to search
through a paper report, which might be several weeks
old and out of date. Also, it would save developers' time
if they could be notified immediately when a
requirement was changed. For example, when a
requirement is changed, both testers using the test
documentation system as well as someone writing a
discrepancy report using the discrepancy reporting
system need to know what changes were made to see if a
test needs to be changed or if a discrepancy has been
satisfied.

Other examples of increased productivity include
producing reports for managers on what requirements
have not been tested or how many outstanding
discrepancy reports exist and to what requirements or
tests they are associated. With separate database
systems, producing either of these reports was very time
intensive. By providing a link between the various
databases, the data could be cross-referenced and reports
generated automatically. In addition, the status of a
project could be more closely monitored and developers
could also be better informed of outstanding issues.

After it became apparent that an increase in productivity
could be gained by linking or combining tools together,
a Process Improvement Committee (PIC) was formed to
investigate the feasibility of integrating the tools. The
committee was made up of management and technical
representatives for each of the tools, with a systems
engineer or architect leading the meetings. Since there
were initially nine tools being represented, there were
often anywhere from 20 to 30 people at the meetings.

The initial goal of the PIC was to find a way to reduce
the number of tools being supported, and to determine a
way to combine or link the remaining tools together.
The first set of meetings were devoted to presentations
and demonstrations of the tools since most committee
members did not know the details of all the tools. These
demonstrations often become quite lively with each
person extolling the benefits of their tool, why it should
be used by everyone, and the part the tool played in
NASA’s overall mission. After the demonstrations, it
became apparent that each tool filled a particular need
or process. Because of this, it was determined that the
number of tools could not be immediately reduced
without having to go back to a manual process for some
of the tasks.

Since none of the tools could be removed, the next step
taken was to determine whether we should buy,
redevelop, or link together the existing tools. Buying
new tools was rejected because there were no
commercial products that performed the same as the in-
house developed tools (which is why they were
developed) and the current set of users for each of the
tools were reluctant, at best, to switch. Development of
a whole new set of tools in a single environment was
rejected for three reasons. The first being that it would
take two to three years to develop a new suite of tools
and developers needed something much sooner. The
second was that the users would have to learn a whole
new set of tools, which many would be reluctant to do.
The third reason was the lack of funding for developing
a completely new application suite given the time
constraints.

This left us with the solution of linking the existing
tools together. This solution had several advantages.
Since users are often reluctant to switch applications,
they could continue using the tools that they were
familiar with (and sometimes helped develop) and there
would be little or no learning curve or down time for
learning yet another tool. In addition, linking the tools
would take much less time than redevelopment, thus
allowing an increase in productivity much sooner. This
strategy also allowed new or commercial tools to be
linked into the group as they became available.

COMBINING THE EXISTING TOOLS
Trying to integrate tools that were being developed and
maintained across organizational boundaries had its
challenges. The first challenge was how to do the
integration. The second challenge was the logistics of
integrating tools developed and being maintained in
separate organizations with separate budgets and
differing priorities for allocating resources to the
integration.

Picking a Design for Integrating the Tools
We initially came up with the following possible designs
for integrating the tools:

• distributed database, using the tools’ current
databases,

• centralized database, which combined the separate
databases,

• combination of the first two (semi-distributed).

The first design required each of the tools to directly
access the data in the other tools using a constellation of
star configurations, as in Figure 1 (the acronyms in the
figures are tools that would benefit from being linked
together). In this design all tools were responsible for
storing the relationship of their data to the data in other
tools, as well as the address of the other tool’s database.
Each tool developer was also required to write an API to
allow access to their data by other tools.

RGS

TTS I CAS

RIDS

AITS

Figure 1: Constellation of star configurations.

The advantage of this technique was that the
performance would be fast and the cost of development
would be spread out over several departments. The
disadvantages of this approach were:

• if one tool needed to change it’s API, all tools would
have to be updated at the same time, and

• if one server went down it would effect all the other
tools that accessed the data on that server.

It was decided not to go with this approach because
some of the departments were on limited budgets and
might not be able to do the necessary upgrades. In
addition, trying to update each of the tools in a
coordinated fashion would be very difficult, since the
tools and the authority to change them was distributed
across departments. There were also concerns on
security with many tools accessing each other’s
databases. Keeping track of who was authorized to
access each database would have to be the responsibility
of each individual tool. Keeping each tool updated with
this information would be a large configuration
problem.

The second design was based on the fact that there
might be a department that may not have the budget to
make any modifications to its tool, but the data stored in
their database would be useful to other tools. This
method would maintain a copy of all the tools’ databases
in a centralized database (Figure 2). This way the data
was available to all tools yet each of the tools could
maintain their own version. The central database would
be updated on a batch basis since the data referenced in
one tool was usually generated by another tool in a
different part of the development lifecycle. Because of
the large span of time in which the data was developed
and the limited number of users, it was determined that
real-time updates were not necessary. However, it was
decided not to go with this approach because it would be
the most costly and the hardest to maintain.

TTS, RIDS, RGS,
AITS, ICAS

Figure 2: Centralized repository for all tools.

The third design combined the advantages of the above
two and could be configured for flexibility and growth.
A three-tiered client/server model was designed with a
middle layer (middleware [1,3]) that all tools accessed
first. This approach maintained a copy of only the
relationships between data in a centralized database with
pointers to the databases that maintained the real data.
This still meant that each tool had to develop an API to
access the middle layers, though this API would be
smaller and less subject to change. From a security
standpoint it was also an improvement. All security
checking would be done through the centralized
database and therefore remove the responsibility from
the individual tools.

The middleware design also allowed each of the tools to
have access to all inter-tool data relationships and the
relationships could be changed without having to notify
every tool, as would have been the case in the
completely distributed solution. With the semi-
distributed solution, the data reference in the central
database would be marked as changed (with a time/date)
and the other tools could check this periodically or when
they referenced the data. This was a better solution than
having to broadcast the change and verify all the
databases got the message.

It was decided to go with the semi-distributed approach
since it provided a good balance between the advantages
and disadvantages of the fully distributed and
centralized approaches. We liked the idea of not having
to maintain a centralized repository for all of the tools,
which would always be out of date due to the batch
updates. The tool developers were also more
comfortable from a security standpoint knowing that all
data requests would be coming from the central database
as opposed to many tools in the distributed approach.
We also felt that tool developers would take the time to
write the needed APIs for their tools if they were limited
in scope and they knew it would result in more people
using their data and tools.

Logistics of Integration
After we determined the design, the new challenge
became how to coordinate all the developers of the tools.
Since all the developers were responsible for developing
some APIs to allow the central database to access their
data, we could not test our link database prototype until
at least two complimentary tools developed APIs.

We immediately came across conflicting schedules
between the developers and the priority each of the
departments had in implementing the integration of the
tools. Each of the development groups were usually
under time constraints to release a new version of their
software, or did not have the funding to implement the
modifications, or they were not convinced the concept

had merit and were not willing to allocate resources.
Time constraint concerns were sometimes valid,
especially when a groups’ data was more important to
other tools than the other tools’ data was to a group.
People were also reluctant to make modifications when
no other tools had made theirs, or until the concept was
proven.

Due to these conflicting goals, differences of opinion on
implementation strategies, priorities, budgetary
constraints, and the need to coordinate development
personnel across departments, it was decided to locate
five of the tools in a single department under two
managers. This allowed the developers to better
coordinate development priorities given time constraints
and limited budgets.

IMPLEMENTATION OF CMDE
Once the design had been chosen (semi-distributed) and
the logistics of modifying several tools at once were
addressed, we needed to decide whether to do the
middleware implementation with a commercial off-the-
shelf product or write custom code.

Picking an Implementation Strategy
After doing some tool studies, we found that there were
middleware tools commercially available that could be
used to do the integration (such as [4,8]).
Unfortunately, no single tool we found could provide the
required cross platform access and guarantee the needed
functionality in the given time frame and within our
budget. The risk also existed that even state-of-the-art
commercial middleware services might not keep pace
with the changing technology [3].

Another problem we found with off-the-shelf products is
the lack of in-depth understanding required of
developers. The interfaces provided in the tools are
abstract to a level where it can be difficult to determine
when errors occur whether they are in the middleware
product, the database, the client, or the design.
Technical assistance, when available from the vendor, is
generic and does not always solve specific
implementation problems. Since our initial proof of
concept did not require all the features included with
commercial middleware, it was determined that
constructing our own middle layer would clarify design
issues, ensure local control, allow for better
maintenance, and still give us the option of converting
to a commercial product down the road [9].

The middle layer was designed as independent modules
that can be added or modified with minimum impact on
other modules. Because of this design and the need to
get CMDE out to the users who would benefit the most,
as soon as possible, it was decided to do the integration
in an incremental fashion. A single development

program, based on our budget, would require several
years before users could start achieving benefits. There
is a vision of a mission development tool suite existing
in a single environment, but the path to obtain that goal
is not a straight one, but an incremental one. The goal
is to link tools together one at a time. This demonstrates
the tool viability and the benefits derived from the
product if budgets should change and development must
be slowed or stopped.

Four stages of integration were planned. The first stage
was to export data so others could import it, in the
second stage tools display data stored in other tools
through a tight coupling, the third stage provides a
means to display the data through a common
middleware, and the fourth stage is the integration of
the tools and databases into a common mission
development environment.

The first stage of integration actually was unplanned
and happened when it became apparent that other tools
could use the data in RGS. An example of this was a
testing tool that required the user to type in the
requirement text that they were testing. To
accommodate the testing and other tools, an export
feature was built into RGS. This allowed other tools to
import the text of requirements into their tools or word
processors. However, if changes are made to the data in
RGS, the tools that imported it are not notified since
there is no mechanism to keep track of other tool’s
imports.

The second stage of integration allows users to display
data in one tool while working in another. This was
needed because one tool required the users to input a
requirement number when entering a discrepancy in an
automated discrepancy system. Users needed the ability
to browse or search through the RGS to find a
requirement as they were writing a discrepancy, instead
of reading through a paper version of the requirements.
This is currently implemented through a web-based
read-only browser which displays the requirement and
lets the users copy and paste requirement numbers or
text of the requirements into the discrepancy tool.

The third stage of integration, which has partially been
completed, was achieved through the addition of the
middle layer to provide sharing of data between the
tools. Figure 3 shows the architecture. The middleware
performs the needed security checks and stores the links
between the data with pointers to the actual data in the
appropriate tool. An example of this is with RGS. A
second tool, the Test Tracking System (TTS), needs to
have each test reference a requirement that it is testing.
The integration is sufficient to allow the testers to
immediately view the requirement that the test is being
written for and also allows them to be notified when a

requirement has been changed. Users will no longer be
required to manually import all the requirements from
RGS and then edit out the requirements they are not
interested in.

The fourth stage of integration, combining the existing
databases into a single mission database, is preferable
from the current semi-distributed implementation
because of speed and easier access. A decision has been
made to transfer CMDE from NASA to industry, so this
stage of the integration will be done by another party.

There are several challenges in integrating the existing
databases. They are all organizational, not technical.
The primary challenge is getting organizations to buy
into giving up some of the control they now have
through maintaining their own databases, for the benefit
of faster and easier access to all of the other mission
data. Another challenge is maintaining confidentiality
over data. If a project does not want anyone else to see
their data they currently can limit access to their group,
since they are in charge of it. Yet another challenge will
be for some tools to obtain the funds to do the necessary
conversions.

Clients

RGS TTS RIDS

Middle Layer

Link dbAccess
Rights

Application
Registry

Structure
Definitions

Database
Connectivity
Driver

Initiates
Session

Stored
Methods

Link
Tables

Figure 3: Semi-distributed solution.

FUTURE ENHANCEMENTS
Plans for future expansions or modifications include:
introduction of workflow, incorporation of the World
Wide Web, plus other foreseeable enhancements.

Adding Workflow
It has been demonstrated that an integrated product such
as CMDE reduces the quantity and length of required
meetings and time to complete tasks [5]. Further
reductions in meetings and a speedup in task completion
time can be accomplished through the integration of
workflow support. Interactive discussions, with
everyone’s contribution visible to all parties, would
simulate group meetings. Requirements could be

negotiated on line and modifications agreed upon
without having to coordinate meetings. A workflow
product could correctly route documents, track and
verify approvals, and send reminders for incomplete
tasks. Collaborative work is required throughout
development but especially in design and test phases.

A groupware product, such as Lotus Notes, would
provide communication, collaboration and coordination
capabilities. As a single product, Notes provides the
synergy between messaging (e-mail), shared database
(conferencing), and development (workflow). A
groupware product can be added to the model with no
significant changes (see Figure 4). Users enter through
the middle layer, have their access rights verified and
are connected to the appropriate Notes database the
same as to any other database. The initial introduction
would add Notes as a workflow tool and a group
discussion facilitator.

RGS TTS

Middle Layer

Expanded Architecture

ICASRIDS
AITS

Lotus
Notes

Not es
db

Figure 4: Expanded three-tier architecture.

World Wide Web
Accessibility to the world wide web is becoming
universal. Web use can decrease cost and permit
concurrent access to information. RGS has developed a
web browser, using Cold Fusion, which allows read only
access to all RGS mission requirements. Subsequent
versions will require users to enter through CMDE
which will check for proper clearances and define links.
A URL method will access a mission browser through
Netscape, allowing any authorized user to review
mission requirements without additional client software.
Added security, integrity controls and recovery
procedures stored in the middle layer will eventually
permit the user to update and approve requirements
through the web.

Other Enhancements
Additional connectivity is envisioned to include external
files, and external programs, including real time
programs. Future versions could contain search
engines, with the capability of searching data within

external files and databases, to retrieve matching
requirements. Ultimately, links could be established in
response to natural language requests.

LESSONS LEARNED
We learned several lessons while developing CMDE.
The most important is how to deal with constantly
changing technology. The second is how to deal with
the logistics of modifying tools across organizational
boundaries.

Constantly Changing Technology
One of the biggest challenges we faced in developing
CMDE was (and still is) the constant change in
technology. Commercial tools are constantly changing
and new ones are becoming available. After evaluating
a set of commercial tools that might do the integration,
another tool or new feature to an existing tool would be
announced that held the potential for solving our
problem without having to resort to custom software.
This was particularly true when we where presenting
our designs to the Process Improvement Committee.
Invariably, after doing a presentation, someone would
say that they had heard of a new tool or new version of
an existing tool that might solve all of our problems. By
the time we evaluated the new tool and came to the
conclusion that it would not solve our problem, another
one became available, which would put us back to
square one. Also, in some cases it was just promises of
new features of a tool to come in the next one or two
months.

In this situation, where there are many people watching
from several organizations, it is very easy to never come
up with a solution since it is often thought that the best
solution needs to be found, and there constantly appears
to be another better solution on the new horizon. This
situation is similar to people who never buy a personal
computer because in three or six months new technology
will become available making what they buy today
obsolete or overpriced. We also got into this situation
where we were spending an inordinate amount of time
evaluating or waiting for new technology that might
solve our problem and no progress was made to solve
our current problem. We finally had to draw the line
and say we were not going to evaluate any more
technology. We instead decided to provide a prototype
that was capable of integrating new products as they
developed.

Combining Tools Across Organizational Boundaries
Organizing the integration of tools that were developed
and being maintained across organizational boundaries
provided more challenges than any of the technology
itself. Providing a committee of the managers and tool
developers helped people see the need for integration
and got buy-in from the required parties. When it came

to the actual design of how to do the integration, the
committee approach proved to be more a hindrance than
help.

Providing periodical updates on the status of the project
to the other organizations was essential for ensuring
continued support. If we did not do this, after two or
three months the other organizations thought the effort
had been abandoned. On the other hand, having too
many meetings made us spend excess time developing
presentations and chasing new technologies that
someone had heard about and thought we should look
into before proceeding any further. When looking into
new technologies, we found it was best to let people
know how long it would take and how much we would
have to delay the current work. Otherwise, we found
that people greatly underestimated the time it took to
investigate a new technology.

CONCLUSION
We have found that integrating stand-alone tools into a
shared environment is feasible. In the Mission
Operations and Data Systems Division stand-alone tools
were often developed or purchased to solve local
automation problems producing several stand-alone
systems. As these tools developed and their use spread,
duplication and overlap became evident. An
evolutionary integration process based on a three-tiered
architecture was designed to join the existing tools with
minimal disruption of on-going projects. This model,
designed for future development allowing for changes in
technology and processes, can be replicated in other
domains where separately developed tools require
integration.

Our project goal was to automate as much of the mission
development process as possible with the quickest return
possible. We determined code written in house would
be best to unite our diverse systems for prototype
development. This has not only provided us with a low
cost working model but also an understanding of the
technological issues being addressed. We are beginning
the evolutionary integration process realizing the
technological problems and more aware of users needs.

The success of this and similar projects is dependent on
usage by all parties participating in the project. We
elected to use an evolutionary process adding tools one

at a time. This makes the measurement of satisfaction
difficult. As the first tools were integrated users
expressed satisfaction and made suggestions. These
suggestions are, where possible, being incorporated
before the next tool is integrated. This improves the
product and increases user ownership of the system, but
adds another variable to the design process making it
even more challenging to evaluate.

REFERENCES
1. Bauer, M.A., et al. A Distributed System Arch-

itecture for a Distributed Application Environment.
IBM Systems Journal, 33, 3, 1994, 399-424.

2. Bernstein, P. Middleware: A Model for Distributed
System Services. Communications of the ACM, 39,
2, February 1996, 86-98.

3. Greenbaum, J. But you don’t get it: Middleware.
LAN Times, August 28, 1995, 73-76.

4. Kramer, M. Tuxedo System 5: Tools for Building
Three-Tier Applications. Available at
http://www.psgroup.com/news/1995/2nc195d.htm.

5. Mandl, D., et al. Overcoming MO&DSD’s Learning
Disability to Building Ground Data Systems "Faster,
Better, Cheaper". Internal NASA Publication, July
1996.

6. Robbert, M.A., Rouff, C., and Burkhardt, C. A
Cooperative Mission Development Environment for
Crossplatform Integration. In Proceedings of
SAC’97: ACM 12th Annual Symposium on Applied
Computing, February 28 - March 1, 1997. San Jose,
California.

7. Sinha, A. Client-Server Computing. Communica-
tions of the ACM 35, 7, July, 1992, 77-98.

8. SQL*NET. Available at http://www.oracle.com
/products/networking/htm/stnd.sqlnet.html.

9. Umar, A. Distributed Computing and Client-Server
Systems. Prentice Hall. 1993.

10. User’s Guide for the Requirements Generation
System (RGS). National Aeronautics and Space
Administration, Goddard Space Flight Center,
Greenbelt, Maryland, June 1995. Available at
http://stellar.gsfc.nasa.gov/csdev/ug40/htframe.htm.

